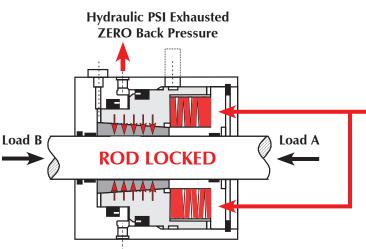


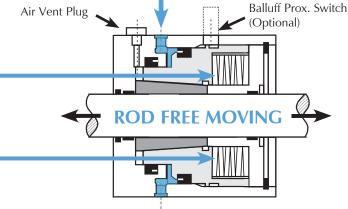
SERIES 'HH' WITH HYDRAULIC ROD LOCK

The TRD difference...

TRD's floating rod bushing design and 'RL' Series Rod Lock = OPTIMIZED RESULTS and SUPERIOR PERFORMANCE.


For rod locks to achieve the rated holding force and maximize cycle life, good alignment must be maintained between the locking mechanism and cylinder rod. Superior performance and trouble-free operation are assured with TRD's floating rod bushing design and accurate rod lock alignment.

Rod locks are used to hold linear cylinder loads stationary in any mounting orientation during power off condition. Units will lock in both directions to rated holding force. They are not designed to withstand rotational loads or to brake the load in dynamic applications. TRD offers each rod lock model in three different holding forces, depending on available release pressure.


OPERATING PRINCIPAL

CLAMPING (LOCKED) CONDITION:

When hydraulic pressure is exhausted from rod lock, extreme spring force is applied to the piston/outer lock housing. This utilizes an ultra-fine tapered wedge, transferring the spring force directly to the rod. Clamping action does not move or disturb the rod, maintaining rod position during actuation.

3000 PSI (MAX) Release Pressure

UN-CLAMPED CONDITION:

When hydraulic pressure is applied to rod lock, the hydraulic pressure overcomes the spring force, moving piston outer locking housing. This movement provides clearance between the rod lock and piston rod, which allows free rod movement.

OPERATING PRESSURE							
Cylinder	Refer to Cylinder Mount Rating						
Rod Lock (Low PSI)	750 to 3000 PSI HYD.						
Rod Lock (Med PSI)	1000 to 3000 PSI HYD.						
Rod Lock (High PSI)	1500 to 3000 PSI HYD.						

AXIAL MOVEMENT (CLAMPED)*					
Load Direction A	.000"				
Load Direction B	.012" Max				

^{*}Represents clearance within the rod lock unit, .000" movement due to actuation.

OPERATING TEMPERATURE						
Standard Seals	-20°F to 200°F (-29°C to 93°C)					
Fluorocarbon Seals	0°F to 400°F (-18°C to 204°C)					

ROD MATERIAL REQUIREMENTS							
Diameter	+.000" to002" Nominal Diameter						
Hardened Shaft	.0005" Minimum hard chrome						
Finish	6 to 10 micro-inch						

CLAMP SPECIFICATIONS							
Response Time	100 ms (clamp); 100 ms (un-clamp)						
Average Life	1,000,000 Clamp Cycles						

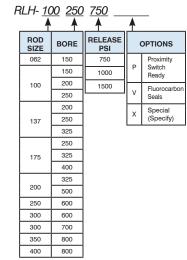
HOW TO ORDER: SERIES 'HH' WITH ROD LOCK

 $- 250 \times 10 - H2C6 - 100 - KK1 - P15 = N375 - SSSS -$

	NFPA MOUNT (TO MOUNT CYLINDER)						
ME6	CAP RECTANGULAR MOUNTING HOLES (1.50" to 8.00" Bore)*						
MF2	CAP RECTANGULAR FLANGE (1.50" to 6.00" Bore)*						
MF6	SQUARE FLANGE, CAP END (1.50" to 8.00" Bore)*						
MP1	FIXED CAP PIVOT CLEVIS (1.50" to 8.00" Bore)*						
MS4	BOTTOM TAPPED HOLES (1.50" to 8.00" Bore)						
MT2	CAP TRUNNION (1.50" to 8.00" Bore)						
MT4	INTERMEDIATE (CENTER) TRUNNION (1.50" to 8.00" Bore)*						
MX2	EXTENDED TIE RODS - CAP (1.50" to 8.00" Bore)						

^{*} HEAD END SPACER THICKNESS CAN VARY AND WILL ADD LENGTH TO CYLINDER

Replacement rod locks can be ordered using the same methodology.


Examples: RLH-1374001500 RLH-100250750P

See page 7 for additional cylinder how-to-order information.

Consult factory for additional mounts.

l	OPTIONS							
	RLH	ROD LOCK READY CYLINDER NO ROD LOCK INSTALLED						
	RLH-MODEL NUMBER	CYLINDER WITH INSTALLED ROD LOCK EXAMPLE: BLH-100250750						

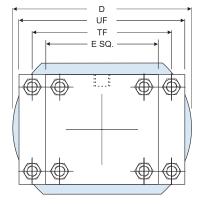
Rod Lock Model Numbers

TECHNICAL DATA: ROD LOCKS

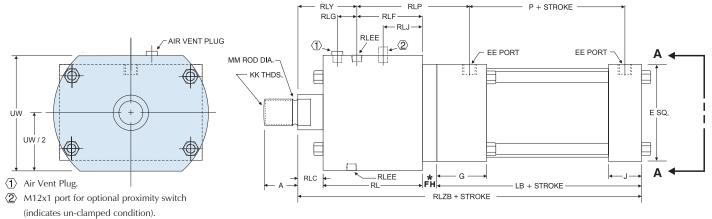
				IECH	IIVI	CA	L DA			
ROD		MODEL	① MIN RELEASE		OF	UME OIL	WEIGHT			
DIA.	BORE	NUMBER	PSI	FORCE	CM ³	IN	(LBS)	ŀ		
0.60=	4.50	RLH-625150750	750	1,100			44.5			
0.625	1.50	RLH-6251501000	1000	1,800	6	0.4	11.5			
		RLH-6251501500	1500	2,250						
1 000	4 = 0	RLH-100150750	750	1,200			40-	r		
1.000	1.50	RLH-1001501000	1000	2,000	6	0.4	10.5			
		RLH-1001501500	1500	2,300				'		
		RLH-100200750	750	2,900				L		
1.000	2.00	RLH-1002001000	1000	5,200	16	1.0	20.8			
		RLH-1002001500	1500	5,600						
		RLH-100250750	750	2,900						
1.000	2.50	RLH-1002501000	1000	5,200	16	1.0	31.0	H		
		RLH-1002501500	1500	6,000						
		RLH-137200750	750	2,700						
1.375	2.00	2.00	2.00	RLH-1372001000	1000	2,700	10	0.6	20.0	
		RLH-1372001500	1500	5,200				Γ		
		RLH-137250750	750	2,700						
1.375	2.50	RLH-1372501000	1000	5,200	16	1.0	30.2	H		
		RLH-1372501500	1500	6,000						
		RLH-137325750	750	8,200						
1.375	3.25	RLH-1373251000	1000	11,500	30	1.8	66.0			
		RLH-1373251500	1500	16,000		L				
		RLH-175250750	750	3,500						
1.750	2.50	RLH-1752501200	1200	5,200	16	1.0	29.5			
		RLH-1752502000	2000	7,500				\vdash		
		RLH-175325750	750	8,200						
1.750	3.25	RLH-1753251000	1000	11,500	30	1.8	65.1	1		
		RLH-1753251500	1500	16,000						

			① MIN	② MAX	VOL			
ROD DIA.	BORE	MODEL Number	RELEASE PSI	HOLDING FORCE	СМ ³	IN ³	WEIGHT (LBS)	
		RLH-175400750	750	8,200				
1.750	4.00	RLH-1754001000	1000	12,000	39	2.4	75.5	
		RLH-1754001500	1500	17,000				
		RLH-200325750	750	8,200				
2.000	3.25	RLH-2003251000	1000	11,500	39	2.4	64.0	
		RLH-2003251500	1500	16,000				
		RLH-200500750	750	8,200				
2.000	5.00	RLH-2005001000 1000 12,000 39			2.4	114.0		
		RLH-2005001500						
	6.00	RLH-250600750	750	30,000		7.9		
2.500		RLH-2506001000	1000	36,000	129		270.0	
		RLH-2506001500 1500 50,000						
3.000	6.00	RLH-300600750	750	17,000	129	7.9	260.0	
3.000	6.00	RLH-3006001000	1000	22,500	129	7.9	260.0	
		RLH-300700750	750	30,000				
3.000	7.00	RLH-3007001000	1000	36,000	144	8.8	380.0	
		RLH-3007001500	1500	50,000				
		RLH-350800750	750	40,000				
3.500	8.00	RLH-3508001000	1000	55,000	181	11.0	550.0	
		RLH-3508001500	1500	80,000				
		RLH-400800750	750	40,000				
4.000	8.00	RLH-4008001000	1000	55,000	230	14.0	530.0	
		RLH-4008001500	1500	80,000				

⁽¹⁾ Maximum hydraulic release pressure: 3000 PSI.

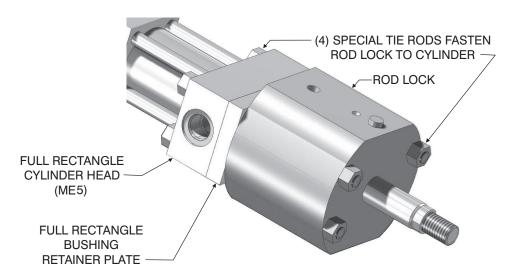

② Holding forces are based on dry or mineral-oil lubricated shafts.

SERIES 'HH' WITH ROD LOCK: BASIC CYLINDER (No Mount)


To be able to handle the high holding forces, the rod lock cylinder uses a full rectangle cylinder head and full rectangle bushing retainer plate to attach the rod lock unit to the cylinder.

Customers need to specify an additional NFPA mount to use the cylinder in any application.

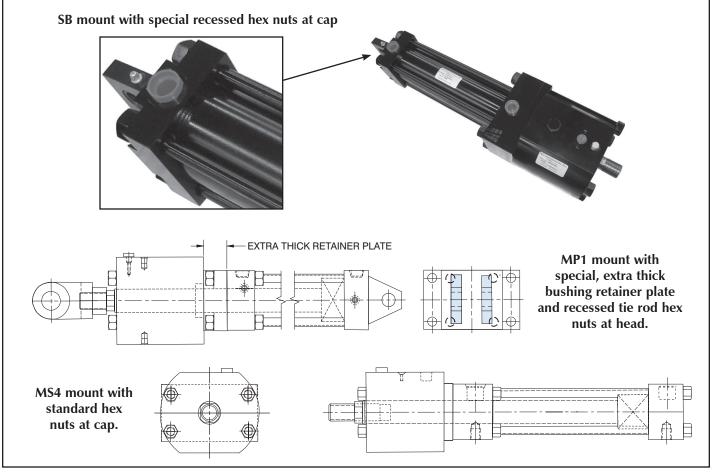
Refer to pages 8 through 26 for basic cylinder dimensions not shown.


VIEW AA

(iiidie			mandon).													
ROD																ADD TO STROKE
DIA.																
(MM)	BORE	D	E	FH*	TF	UF	UW	RL	RLC	RLEE	RLF	RLG	RLJ	RLP	RLY	RLZB
0.625	1.50	4.370	2.500	0.375	3.438	4.250	3.250	3.547	0.375	SAE 4	2.125	0.750	0.790	3.500	1.740	8.930
1.000	1.50	4.370	2.500	0.375	3.438	4.250	3.500	3.453	0.500	SAE 4	1.875	0.870	0.790	3.250	2.010	8.947
1.000	2.00	5.375	3.000	0.625	4.125	5.125	4.500	4.375	0.500	SAE 4	2.900	0.850	1.000	4.531	1.910	10.120
1.000	2.50	5.984	3.500	0.625	4.625	5.625	5.000	5.125	0.500	SAE 4	3.480	1.000	1.500	5.031	2.160	11.000
1.375	2.00	5.370	3.000	0.625	4.125	5.125	4.500	4.650	0.625	SAE 4	3.000	1.000	1.500	4.625	2.210	10.531
1.375	2.50	5.984	3.500	0.625	4.625	5.625	5.000	5.125	0.625	SAE 4	3.500	0.900	1.500	5.031	2.280	11.120
1.375	3.25	7.750	4.500	0.750	5.875	7.125	6.500	6.500	0.625	SAE 4	4.500	1.100	2.600	6.375	2.625	13.375
1.750	2.50	5.984	3.500	0.625	4.625	5.625	5.000	5.900	0.750	SAE 4	3.900	0.960	2.438	5.531	2.700	12.040
1.750	3.25	7.750	4.500	0.750	5.875	7.125	6.500	6.500	0.750	SAE 4	4.672	0.930	2.600	6.547	2.580	13.500
1.750	4.00	8.375	5.000	0.875	6.375	7.625	7.000	6.500	0.750	SAE 4	4.375	1.230	2.200	6.313	2.810	13.875
2.000	3.25	7.750	4.500	0.750	5.875	7.125	6.500	6.500	0.875	SAE 4	4.438	1.160	2.600	6.313	2.938	13.625
2.000	5.00	11.250	6.500	0.875	8.188	9.750	7.000	6.500	0.875	SAE 4	4.375	1.230	2.200	6.375	3.000	14.500
2.500	6.00	12.750	7.500	1.000	9.438	11.250	10.000	9.000	1.000	SAE 8	6.625	1.125	3.000	8.750	3.375	18.375
3.000	6.00	12.750	7.500	1.000	9.438	11.250	10.000	9.000	1.000	SAE 8	4.875	1.100	3.110	7.000	5.125	18.375
3.000	7.00	14.750	8.500	1.000	10.625	12.625	13.000	10.000	1.000	SAE 8	7.325	1.375	4.730	9.825	3.675	20.500
3.500	8.00	16.140	9.500	1.000	11.813	14.000	14.000	11.500	1.000	SAE 10	8.938	1.320	5.350	11.625	3.563	23.000
4.000	8.00	16.140	9.500	1.000	11.813	14.000	14.000	11.500	1.000	SAE 10	8.875	1.370	5.350	11.563	3.625	23.000

^{*}May vary per mount, consult factory for details.

SERIES 'HH' WITH ROD LOCK: BASIC CYLINDER (No Mount)

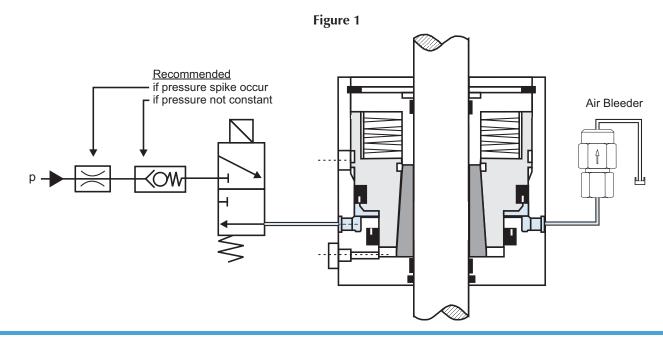

General Construction

TRD 'HH' Series hydraulic cylinders are designed to be stand alone units so they can be fully serviced without the rod lock installed. Hydraulic rod locks are aligned and bolted to the cylinders using (4) special tie rods and hex nuts. This design allows for both the cylinder and the rod lock to maintain full serviceability once in use.

CYLINDER DESIGN AND AVAILABLE MOUNTS

A full rectangle cylinder head mount is used exclusively to attach the rod lock to the cylinder. An additional mount must be specified to be able to use the cylinder.

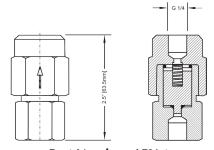
The cylinder design can vary depending on the bore size, tie rod hex nut location and desired mount. Note: some designs will increase cylinder overall length.



Contact your local distributor with the basic cylinder bore, stroke and desired NFPA mount information and TRD will configure a cylinder with rod lock to meet your specifications!

ROD LOCK HYDRAULIC CIRCUIT AND AUTOMATIC AIR BLEED VALVE

In most applications, the sample circuit in Figure 1 is used to actuate the rod lock. To release (un-clamp) the rod lock, the three-way valve is energized, supplying pressure to the rod lock. In power failure modes, E-Stop, loss of hydraulic pressure, etc., pressure is removed from the rod lock; spring energized rod lock clamps the rod holding it in place.


Avoid designs where the piston rod is moved while rod lock is actuated (clamped condition); piston rod and rod lock damage may occur. Do not exceed the maximum holding force of the rod lock unit.

AUTOMATIC AIR BIFFD VALVE ABV-1

All rod lock units have a very short activation stroke and quick (100ms) response. It is highly recommended that all air be removed from the rod lock unit. Trapped air at high pressure and frequent cycling can cause ignition of the air-oil mixture, causing mini explosions (dieseling) to occur, which will lead to seal failure.

To avoid trapped air, an automatic air bleed valve (or similar component) should be installed between the rod lock and the oil reservoir. Locate the ABV-1 as near as possible to the rod lock, in the port with the highest elevation (see Figures 2 and 3).

Part Number: ABV-1 (Order separately)

ABV-1 OPFRATION

The automatic air bleed valve (ABV-1) opens slightly each time pressure is removed from the rod lock, allowing air to escape back to the oil reservoir.

For proper operation, back pressure exceeding 30 PSI (2 bar) should be avoided between the ABV-1 and oil reservoir.

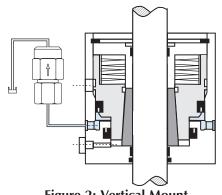


Figure 2: Vertical Mount

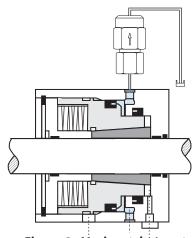
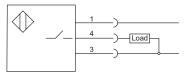


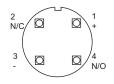
Figure 3: Horizontal Mount

ROD LOCK SENSORS (For Un-Clamped Condition)


An inductive proximity switch (with $M12 \times 1$ thread) can be used to sense the rod lock un-clamped (free moving rod) condition.

(BALLUFF Model: BES 516325S4)

ELECT	RICAL DATA						
SA Operational distance with steel	1.6 mm						
Maximum switching frequency	800 Hz						
Operating voltage	10 - 30 V DC						
Supply voltage ripple	≤ 15% (Peak to Peak)						
Load current capacity	≤ 200 mA						
Protection against polarity reversal	yes						
Short circuit protected	yes						
Function display	LED						
Output resistance	2.2 K + Diode + LED						
Ambient temperature range	-25°C to 70°C (-13°F to 158°F)						
Temperature of switch point	≤ 4 mm / °C						
Parallel cap to load permitted	1 mF at 24 V DC						
Residual voltage (un-clamped)	≤ 0.8 V						
Voltage drop (clamped)	≤ 2.5 V						
Voltage rise on switching							
Switching hysteresis	≤ 15% Sensing distance						
Repeatability	≤ 5% Sensing distance						
Current Consumption	≤ 25 mA clamped / ≤ 12 mA un-clamped						



SCHEMATIC

Wiring Connections: PNP Normally Open

View of Male Connector Pins

PROXIMITY SENSOR INSTALLATION INSTRUCTIONS

- 1) Apply hydraulic pressure to rod lock (un-clamped condition).
- 2) Assemble the proximity sensor jam nut and lock tooth washer to the proximity sensor. Thread the proximity sensor (by hand) into the M12 x 1 rod lock threaded port until it contacts the internal steel piston.
- 3) Back the proximity sensor out one full turn. While holding the proximity sensor's position, tighten the jam nut to 15 ft-lbs (do not over torque).
- 4) With electrical power off, connect the proximity sensor electric wiring per the diagram included with the sensor. When the electrical power is on, the proximity sensor LED should be "on" to indicate an un-clamped condition. Slight adjustments may be necessary to set proximity sensor for proper operation.
- 5) Remove the hydraulic pressure to the rod lock, the proximity sensor LED should go "off" to indicate the clamped conditions.

ROD LOCK INSTALLATION INSTRUCTIONS

- 1) Using a flexible hydraulic rated hose, apply hydraulic pressure to the rod lock unit (refer to model number for specific rod lock hydraulic release pressure).
- With the rod lock counter-bored end facing the cylinder rod end, align rod lock to rod. Using care not to damage rod lock seals or bearings, slide the rod lock onto the piston rod until it contacts the cylinder mounting surface. Rod lock should fully contact the cylinder.
- 3) Remove the hydraulic pressure to the rod lock. Torque cylinder tie rod nuts a little at a time, in a clockwise rotation, finishing with the proper cylinder tie rod torque (refer to torque charts on page 150).
- 4) Cycle the rod lock unit on and off several times. With pressure applied, the cylinder rod should move freely by hand.
- 5) If the cylinder rod does not move freely, remove the rod lock and repeat installation instructions. If the piston rod still drags, check the squareness of the rod lock to the cylinder and make adjustments as needed.

WARNING! DO NOT DISASSEMBLE ROD LOCK — UNIT CONTAINS HIGH SPRING FORCE THAT COULD CAUSE PERSONAL INJURY. Return to TRD for service.